Uses the same syntax as enlist_contrasts()
and
set_contrasts()
. Returns a summary table of the contrasts you've set. If
you set return.list=TRUE
then you can access a list of contrasts in the
second element of the resulting list. The glimpse dataframe is the first
element. FALSE
will return just the glimpse data frame.
Usage
glimpse_contrasts(
model_data,
...,
return_list = FALSE,
show_all_factors = TRUE,
add_namespace = FALSE,
show_one_level_factors = FALSE,
minimal = TRUE,
verbose = getOption("contrastable.verbose")
)
Arguments
- model_data
Data to be passed to a model fitting function
- ...
Series of formulas
- return_list
Logical, defaults to FALSE, whether the output of enlist_contrasts should be returned
- show_all_factors
Logical, defaults to TRUE, whether the factors not explicitly set with formulas should be included
- add_namespace
Logical, defaults to FALSE, whether to append the namespace of the contrast scheme to the scheme name
- show_one_level_factors
Logical, should factors with only one level be included in the output? Default is FALSE to omit
- minimal
Logical, default TRUE, whether to omit the orthogonal, centered, dropped_trends, and explicitly_set columns from the output table
- verbose
Logical, defaults to TRUE, whether messages should be printed
Value
A dataframe if return.list is FALSE, a list with a dataframe and list of named contrasts if TRUE.
Details
Generally, glimpse_contrasts
will give warnings about mismatches between
the specified contrasts and what's actually set on the factors in a
dataframe. The warnings will typically tell you how to resolve these
mismatches. See the contrasts
and warnings
vignettes for more
information.
Examples
my_contrasts <- list(cyl ~ sum_code, carb ~ helmert_code)
my_data <- set_contrasts(mtcars, my_contrasts, verbose = FALSE)
my_data$gear <- factor(my_data$gear) # Make gear a factor manually
# View information about contrasts; gear will use default for unordered
glimpse_contrasts(my_data, my_contrasts)
#> factor n level_names scheme reference intercept
#> 1 cyl 3 4, 6, 8 sum_code <NA> grand mean
#> 2 carb 6 1, 2, 3,.... helmert_code <NA> grand mean
#> 3 gear 3 3, 4, 5 contr.treatment 3 mean(3)